Design of Hybrid Fuzzy Neural Network for Function Approximation
نویسندگان
چکیده
منابع مشابه
Design of Hybrid Fuzzy Neural Network for Function Approximation
In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon presentation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The connections between input to hidden nodes represent rule ...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملDesign Network Intrusion Detection System using hybrid Fuzzy-Neural Network
As networks grow both in importance and size, there is an increasing need for effective security monitors such as Network Intrusion Detection System to prevent such illicit accesses. Intrusion Detection Systems technology is an effective approach in dealing with the problems of network security. In this paper, we present an intrusion detection model based on hybrid fuzzy logic and neural networ...
متن کاملNeural network design for J function approximation in dynamic programming
This paper will show that a new neural network design can solve an example of difficult function approximation problems which are crucial to the field of approximate dynamic programming(ADP). Although conventional neural networks have been proven to approximate smooth functions very well, the use of ADP for problems of intelligent control or planning requires the approximation of functions whic...
متن کاملA Wavelet Neural Network for Function Approximation and Network Optimization A WAVELET NEURAL NETWORK FOR FUNCTION APPROXIMATION AND NETWORK OPTIMIZATION
A new mapping network combined wavelet and neural networks is proposed. The algorithm consists of two process: the selfconstruction of networks and the minimization of errors. In the first process, the network structure is determined by using wavelet analysis. In the second process, the approximation errors are minimized. The merits of the proposed network are as follows: network optimization, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent Learning Systems and Applications
سال: 2010
ISSN: 2150-8402,2150-8410
DOI: 10.4236/jilsa.2010.22013